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1. SUMMARY

Some shortcomings of past and current approaches for Until recently, attempts to build general models of human
modeling human visual search and target acquisition (STA) observer target acquisition performance have met with only
are discussed. The effects of complex pattern perception, limited success. By the term "general", we mean models
visual attention, learning, and cognition on STA that accurately predict the detectability of (at least) military
performance are particularly emphasized. The importance targets as viewed through a wide variety of sensors in a
of these processes is explained and approaches are wide variety of backgrounds, without the need for
suggested for modeling them. Guidelines are also provided calibration in each new situation. The difficulty no doubt
for testing and validating models of visual search and target stems in part from the inherent complexity of human
acquisition. These guidelines take into account the roles of perception and performance - but also in part from the
pattern perception, visual attention, learning, and cognition manner in which the problem has been approached by the
in STA performance. The present paper also presents and military R&D community.
compares alternative approaches to field testing for the
purpose of model validation. Military-sponsored STA modeling has traditionally

followed either of two approaches: (1) physics-based, or (2)
Keywords: search, target acquisition, perception, simple models of human visual performance that
attention, learning, cognition, validation emphasize only a part of the neural "machinery" involved

in human STA. The physics-based approach is based on the
2. INTRODUCTION idea that simply matching the target signature to the

background clutter will suffice to deny detection. In spite of
The military spends millions of dollars annually to build decades of research, this approach has failed. The reason is
large-scale, system-level simulations of weapons and that no one has been able to determine to which aspects of
related systems. These simulations enable their users to the background clutter it is necessary to match to the target.
understand how the systems will perform under conditions It has proven impossible to match targets to all aspects of
that would be impossible or extremely costly to produce in background clutter because clutter characteristics change

the real world. However, very little money is spent on over and within scenes (i.e., clutter is non-stationary).

system-level simulation of the one system that is key to all

military operations - the human visual system. Modeling efforts following the second approach -
modeling only a limited part of the visual system -have

System-level simulations of human vision could be useful typical ly emphasi ed t of the eye to

in setting performance standards for both the naked eye and light, or at best, the basic spatio-temporal contrast
all types of sensors and systems in which the finallihoatbsheaicpto-mor onat
aulgtypes of snensorstandsyten whic tadebyaheufinal osensitivity of the visual system. They typically pay scant

yudgement or interpretation is made by a human observer, attention to the important roles of complex pattern
System-level simulations of human vision would also lead perception, visual attention, learning, and cognition in STA
to more accurate design requirements for sensors and performance. Thus, they model only a limited part of the
camouflage, concealment, and deception (CCD) systems. A promne hs hymdlol iie ato h
caoulae , conerstalmengofte humand decepionu systemw ls. Avisual system. This state of affairs has occurred, in large
better understanding of the human visual system would also prbcueteehsntbe iesra nesadn

provde nsihtsintohowbes totes andvaldat moelspart, because there has not been wide-spread understanding
provide insights into how best to test and validate models of the attentive, perceptual, and cognitive aspects of visual

of search and target acquisition (STA) performance.

Paper presented at the RTO SCI Workshop on "Search and Target Acquisition", held in Utrecht,
The Netherlands, 21-23 June 1999, and published in RTO MP-45.
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perfornmance and the role of learning in the military R&D Unfortunately. including all the relevant visual processes
comnmunity. leads to very complex models that are difficult to validate,

There is, however, a widening awakening to the role of as Richard Hlecker notes in his abstract. Hlowever, we
attention, perception, cognition, and learning. Some of the disagree with Dr, I lecker's implication that higher
papers in this conference attest to that fact. In his abstract, perceptual processes like recognition, identification, and
Al Ahumada remarks that "learning and mnemory search can be eliminated from a model and still have it
components are required for a model that can accurately generate accurate predictions. We will therefore also
predict human detection in unpredictable backgrounds." In discuss requirements for model testing and validation that
discussing shifts of attention during search. John Findlay take into account these higher level processes.
suggests that "eye movements arc programmed on the basis
of a spatial salience map with both excitatory and
inhibitory influences reaching it from feature maps", and 3. ROLES OF ATTENTION, PERCEPTION,
"flexibility in search is provided through learning COGNI TION, PERCEPTI
mechanisms." Commenting on the role of perceptual COGNITION, AND LEARNING IN STA
organization in contour and texture segregation. Wilson
Geisler notes that "evidence suggests that more
sophisticated models incorporating perceptual organization 3.1. Perceptual Organization
mechanisms will be required to predict human texture and Walker and McManamev 2 point out that first-order
contour segregation performance." statistics do not provide information about the spatial

structure of an imace. First-order metrics include the mean
and standard deviation, as well as some less well-known
metrics like the Doyle metric and measures of histogram

X. X .~similarity. The tank and the background shown in Figure 1
have identical means and standard deviations, and they're
also identical in terms of the Doyle metric and histogram
similarity. But they differ in terms of the arrangement, or
spatial structure, of the pixels of various gray-scale values.

ý K.0 'The fact that the tank is clearly detectable from the
background demonstrates that first-order statistics are not
sufficient.
To account for the detectability ofthis target we must
consider second-order metrics. The gray level co-
occurrence matrix (G1.CM) is one second-order metric;
others include the correlation length and the co-occurrence
matrix. Both of these quantify the correlation between

gray-scale values various numbers of pixel locations apart.
Although the GI,CM. corrclation length. and co-occurrence

' matrix capture some of the properties that contribute to
detection. they don't capture all of them. There are texture

k differences that humans can distincuish. but to which
GLCM and correlation length mctrics are insensitive.

Figure 1. Tank and background with identical first-order The inage in Figure 2a contains a texture irregularity that

statistics, human observers can detect (note center bar-shaped region
in the center of the image). I lowever. most metrics and
models of vision cannot detect this irregularity 4. This is true
of both single-stage, oriented linear-filter models and

The cost of ignoring attention. perception, cognition, and metrics like the correlation length. co-occurrence matrix,
learning is that the models developed have limited scope, and GLCM. The reason for this is that the entire pattern is
and must be empirically calibrated for each new sensor made up of the same texture elements - lines of the same
technology, background environment. CCD technique. and length at different orientations. In addition, the probabilities
level of observer experience. In the remainder of this paper of gray-level transitions from point to point are virtually the
we will explain which aspects of attention, perception, same in the center "irregularity"' and the surround regions
cognition, and learning we believe are most important and of the image. What distinguishes the center region is not
why they must be modeled in order to predict STA the texture elements themselves. but their relationship to
performance accurately and generally. We will also one-another. Note around the center region, that there are
describe the manner in which these processes have been abrupt transitions in the relative orientations of the line
implemented in one model of human search and detection elements. In the background, by contrast, the orientations
performance - the Georgia Tech Vision (GTV) model. of adjacent line elements change only slowly.



1-3

if/ ... k•I /1 ... Il # .' ---- •'.. I/

"x\%l I•---x %tll ---- % l i/-'---.\

Figure 2a. Input image with Figure 2b. Output of a single- Figure 2c. Output of two-stage,
texture transition near center. stage, simple cortical cell, filter complex cortical cell, vision

model, model.

Another way of thinking about this pattern is that the center various sizes and orientations. This smoothing serves to
region is defined by a texture transition. In order to detect identify the extent, or boundaries, of each type of texture
these subtle texture transitions, a vision model must have a identified by the first-stage filters. By comparing these
second filtering stage, which models the outputs of boundaries, GTV can identify texture boundaries, as shown
complex cortical cells. Figure 2b shows the output in Figure 2c.
produced by a model with only simple cortical cell (single- But is the detection of such subtle texture transitions
stage) filters, for the input in Figure 2a. Note that there isno dffeentil sgnaltha ditingishs th ceterrelevant to real-world CCD problems? Figure 4a shows ano d ifferential sig n al th at d istin gu ish es th e center t x u e t a s t o h t m g t o c r w t e f c lirregularity. texture transition that might occur with a perfectly

camouflaged vehicle positioned against a background of
The GTV model has a second filtering stage, as shown in vegetation. When the vehicle is repositioned, there will be a
Figure 3. Each first-stage output is routed to multiple phase mismatch between the texture of the vegetation and
second-stage, spatial-frequency band-pass filters, the camouflage pattern on the vehicle. Figure 4b shows a
Depending on the version of GTV run, the second-stage GTV output for this pattern, after the model is trained to
filters may also be orientation-selective. The second stage detect similar phase-mismatched targets.
filters smooth the outputs of each first-stage over regions of

Spectral Band LUM Spectral Band C 1

Orientation Selective

- Band-Pass Filtering

m •Rectification

Low-Pass Filtering

Inter-Channel laterations etc. for
I spectral bandsContast Non-linearity C n

C2 and R

Orientation Seiective Orieniation Selective
Band-Pass Fiiteiring . Bad-Pass Filterig etc.

Low2 Past Feng Low-Pass Fiitering

Conpex" Signature 'Simple" Signature Signature Discrimination

DiCriminatioiatures Discrimination Features Features For More
Discrimination Features Spectral Bands

Figure 3. Schematic of GTV two-stage filter process, simulating complex cortical cell outputs.
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Figure 4a. Object perfectly matched in pattern and Figure 4b. Output of GTV identifying pattern in
chromaticity to background. Figure 4a.

3.2. Attention and Search generated by using multiple-channcl, quasi-linear filtering
mechanisnis. This map also serves as a basis for

There is substantial evidence that eye mlovemenlts segregating the input scene into areas of interest for further
(saccades) during visual search are guided by preattentive (attentivc) processing.
(unconscious) processing of pattern information in
peripheral vision. For example. recordings of eye Another aspect of search that affects target acquisition is
movements over structured scenes reveal that the eve the temporal sequence of eye fixations in a scene. A wealth

fixates on features such as edges and corners that are more of data shows that human observers tend not to

likely to convey information than are plain surfaces., In imnmdiatly re-fixate on ohiects when inspecting a
reading, the eyes of proficient readers search out larger scene. wThe GTV im odel includes a systematic search

words, which convey a higher degree of meaning than do routine which simulates the fet that ohservers tend to

small words, such as articles" Visual search proficiency disregard objects that they have recently fixated and

has even been used as a measure of peripheral visual determined not to be targets. Thus, if an object has a high

acuity. 7-9 probability of fixation on one glimpse. and it is determined
not to be a target. it \Nill be less likely to be fixated on the

The implications of this are: next glimpse. The systematic search routine also simtulates

"* That clutter (i.e., the input scene) drives visual the tendency of observers to eventually re-fixate objects

search. that were previously fixated and found not to be targets.
Fixation probabilities that \were initially high and decreased

"• That successful search is a prerequisite for tend to recover (increase again) aftcr a number of glimpses.
detection. The recovery time depends on the number of blobs in the

"* The eyes fall on those objects that are most field of x iew. This is consistent with empirical studies of
conspicuous. visual search.

"* The assumption. often made in visionl models,
that search is random is false. 3.3. Selective Attention and Perceptual Learning

The first line of self-protection is not to be noticed in the There are at least two aspects of attention that are important
first place, that is, to deny visual search. It's generally to STA performance. One - the mechanism that determines
easier to prevent ain observer from locating a target than it eye fixations and preattentive shifts in visual attention -
is to deny detection once hle's looking directly at the target. was discussed in the last section. A second concerns the
This is especially true in mledium- to high-clutter nature of the visual features that contribute to preattentive
environments. "pop-out" ofoh'iects and whether those features are subject
Explicit modeling of the effect of clutter on visual search is to modification through learning. In the 1970's. Ant
Explicitheiefodeiig ncsaTreisman and her colleagues argued that preattentive
therefore necessary to accurately, predict target acquisition, processing and selection occur only for objects that are
High clutter in an image reduces probability of locating the uniquely distinguished bv a single perceptual dimension,
target, given limited search time. The GITV model predicts such as sue, color. shape, and luminance. I lowever,
the fixation locations based on the spatial and temporal such Woloe and h ues ater showe ven

Jeretv Wolfe and his colleraies later shoed that giveni
contrast of ohiects iil thle input image. A salienlce map is sufficient practice. ohservers-could precattentively identify,
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objects based on conjunctions of perceptual dimensions weighting routine is highly effective in reJecting clutter, as
(e.g., find the red circle in a background of blue circles, shown in Figure 5, and it allows the model to simulate the
blue squares, and red squares). Neisser and others have performance of experienced human observers.
shown that, given enough experience with the stimulus,
observers can reach a point where complex combinations of 3.4. Other Cognitive Processes that Affect STA
features support pop-out. For example, Neisser found that
after extensive training, observers can learn to rapidly pick Another aspect of cognition that affects search and target
out a target letter that is very similar to the background acquisition is perceptual decision making. Target
clutter, e.g., a "K" in a field of Es, Hs, Ts, Ls, and Fs. acquisition is not simple signal-to-noise ratio threshold
Schneider and his colleagues have studied the development process, but involves decision-making. Signal detection
of"automaticity" or preattentive processing in letter search theory describes observers' ability to trade-off detections
tasks. They showed that letters that are consistently versus false alarms. These trade-offs can distort the relative
"mapped" as one of a set of targets (as opposed to probabilities of detection in task of differing difficulty' 3.
sometimes being targets and sometimes distractors) For example, we have previously reported that human
eventually become automatically processed after extensive observers tend to shift their decision criterion as the
practice. difficulty of the detection task changes. For example, in

With no selective attention algorithm:

Input image: Model output:

With selective attention algorithm:

Input image: Model output:

Figure 5. Clutter rejection performance of the GTV model.

After extensive practice, military observers are often able low clutter conditions the observer may adopt a relatively
to immediately pick out targets in cluttered scenes that high decision likelihood ratio criterion, P3. But when faced
novice observers must search for painstakingly. They have with high clutter, the same observers tend to relax 3. This
evidently learned to preattentively process the target. It is has the effect of allowing them to increase their probability
therefore important to model the effect of learning on pop- of detection at the cost of a higher false alarm probability,
out and visual search performance. One way of doing this as illustrated in Figure 6. This perceptual decision tradeoff
is to differentially weight the filter-channel outputs before process can have considerable impact on measured
pooling them into a single salience map. The weights probabilities of detection.
would be designed to amplify channel outputs typical of the
target, and attenuate channel outputs typical of background
clutter. The GTV model uses this method, employing a
discriminant analysis routine to compute the weights. The
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probability. The larger the observer's field of
view. the less likely it is that any' given target
will be foveated (assuming constant

PI amagnification). It is therefore important that the
apparent field of view (AFOV) of the imagery,
used to test models be the same as the AFOV
that observers used in the experiment whose

------ /. results are to be matched.

// ' Simply instructing observers to make their
/.responses indicative of a given level of

cr .processing (e.g.. locate "areas of interest"
without full detection or recognition) does not

.... C:r........ ,..... guarantee that they limit their processing to that
level, Ifthc observers arc given enough time,
they generally perform higher lcvels of

Ft-, processing (e.g.. recognition or identification)

before reporting tile location of an area of

Figure 6. ROC curve showing shift in observer interest. Even if exposure time is limited,

criterion with task difficulty, observers may perform additional processing on
the persisting iconic memory of the target.

The GTV model uses signal detection theory in two ways. Observer validation experiments should
When there are multiple "blobs" or areas of interest in the therefore use brief inlage exposures followed by
field of view, a decision must be made as to which blob the a noise mask pattern in order to limit processing.
eyes will saccade to next. The extreme detector model is If the model under test requires training, the
used to make this decision. The choice of blobs for the next target and background images given thle model
saccade is highly non-linear - even though one blob may during training must adequately sample the
have just slightly greater spatio-temporal contrast energy get and background features that will be
than the others, it's probability of fixation will be much same ta et a nag ea tw
larger. The metric used to describe each blob is actually a present in the test imagery.

power function of its spatio-temporal contrast energy. * Two possible scenarios must be considered in

The GTV model also uses signal detection theory to decide determining tile spatial resolution of imagery

whether or not the blob currently being fixated is a target. used to test a model: (a) the resolution in the

The spatio-temporal contrast metric for the current blob is observer test was limited by a display and/or

compared to the distributions of the same metric for targets sensor, or (b) the resolution in the observer test
cmadtwas limited only h\ the human eye, e.g..

and clutter obJects encountered during training. It is observers viewing targets with the naked eye or
predicted that tile observer says "yes, the blob is a target" DVO in clear eongitiogs. In the first case, the
when the ratio of the probability densities of the target to images submitted to the model must be filtered
clutter distributions exceeds the criterion value of the ima te the model system.deciionliklihod rtio ~.to simulate thle MTF of sensor/display system.
decision likelihood ratio, .In the second case, the images provided as

inputs to the model must have resolution at least
4. REQUIREMENTS FOR TESTING AND as great as that of the human visual system.
VALIDATING STA MODELS They must therefore be captured by a sensor

There are a number of requirements for tile design and whose resolution exceeds that of the human
visual sy'stemn.

conduct of successful validation tests that derive from an
understanding of human vision and visual cognition. * The temporal up-date rate of the imagery should
Although many investigators will be familiar with these be at least the Nyquist frequency of the highest
requirements, one or more of the requirements have not rate of temporal modulation in the scene.
been met in almost all STA model validation efforts. Alternatively, frame rate can be set to the
Exposition and discussion of requirements can therefore highest temporal cut-off frequency of the human
benefit the STA community. eve. This last quantity will depend on the

"• Since the sensitivity of the human visual system intensities, spatial frequencies. and

depends on the luminance level and chromaticities in tile scene and tile viewing

chromaticity of the input scene, input images conditions.

must be photometrically and colorimetrically It should be noted that these requirements are a product of
calibrated. Some issues of color calibration are the complexity of human observers' visual performance -

discussed by Rogers and Thomas' 4. not a consequence of the complexity of any' model. They
therefore apply regardless of whether one is testing a"• Since the humnan visu~al system has high acuity

only in small portion of the visual field (i.e., the simple or a complex model.

fovea), the likelihood that a target is foveated is
aii important determinant of overall detection
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5. ALTERNATIVE APPROACHES FOR FIELD in backgrounds collected from the field. This is Approach
TESTING AND MODEL VALIDATION B in Table 1, and the approach used by TNO for the

DISTAFF data set. This approach does not eliminate the
The process of validating search and detection models or

metrics is expensive and time-consuming. It is therefore camera dynamic range problem, but ensures that both the
observers and the STA model are subject to the same

worth considering some of the alternative approaches ervers an thega modeve s appro the same

available and the advantages and potential pitfalls of each. effects in this regard. However, this approach still suffers

We contrast three different approaches here, all of which from other disadvantages (which are also present in

Table 1. Alternative approaches for field testing and STA model validation.

Approach A e Collection of imagery of targets in backgrounds, ground truth, ambient illumination,

Observer test in the field meteorological data, and calibration data in field with high resolution camera

* Observer test in field viewing targets through DVO device

e Field imagery and calibration data submitted to STA model to generate predictions

9 Model predictions compared to observer performance in field

Approach B e Collection of imagery of targets in backgrounds, ground truth, ambient illumination,

Observer test in the laboratory meteorological data, and calibration data in field with high resolution camera

with field imagery • Observer test in the laboratory by displaying imagery from field test

o Field imagery and calibration data submitted to STA model to generate predictions

e Model predictions compared to observer performance in laboratory

Approach C 9 Collection of imagery of background only, ground truth, ambient illumination,

Use and validation of synthetic meteorological data, and calibration data in field with high resolution camera

imagery e Measurement of Bi-directional Reflectivity Distribution Function (BRDF) of target

Observer test in the laboratory paints
with synthetic imagery a Synthetic target generated and inserted in calibrated background imagery from field

• Synthetic imagery validated by comparing it to field imagery

e Observer test in the laboratory with validated synthetic imagery

e Synthetic imagery submitted to STA model to generate predictions

* Model predictions compared to observer performance in laboratory

involve collection of imagery from the field and Approach A). For one, it is expensive and time-consuming
psychophysical tests with human observers in either the to deploy real targets in the field in a controlled manner.
field or a laboratory. The three approaches are summarized The very act of deploying them also produces extraneous
in Table 1. detection cues, such as vehicle tracks.

The conventional and most obvious approach is to collect Capturing temporal effects is also a problem in both
both observer data and imagery to submit to the STA model approaches A and B. If one wants to capture important
in the field. This is Approach A in Table 1. One of the effects of target motion (relative to the background, or
major disadvantages of Approach A is that it is difficult to motion of parts of the target relative to the whole), then the
control observer tests in the field. The field of view, problems of field deployment and control are compounded.
exposure time, time of day, and cloud shadows experienced For example, the rate and pattern of motion of a vehicle
by observers all must be the same as those in the imagery over rough terrain may be an important
collected for submission to the STA model. Moreover, the detection/recognition cue. Shadows produced by clouds
observers must be shielded from acoustic and social cues and the motion of helicopter rotor blades are other temporal
that would affect their STA performance. Another serious effects that can greatly influence detection. Capturing these
problem with Approach A is that no camera can reproduce motion effects in imagery requires a very high frame rate,
the full range of colors and intensities that the observers and results in a huge amount of imagery that must be stored
experience in the field. Very high signals (e.g., from and calibrated.
specular reflections) will exceed the dynamic range of the Extraneous cues from target deployment can be eliminated
camera (i.e., saturate). If the camera gain is set lower, then and temporal effects controlled by using synthetic imagery
low signals (e.g., in shadowed areas of the scene) will fall for both the observer test and as input to the STA model.
below the sensitivity threshold of the camera and these This approach is used in the VISEO system15 , and is shown
areas will appear black in the image. as Approach C in the above table. This is a two-step

One possible solution to these problems is to do the approach - first synthetic imagery is generated and
observer testing in the laboratory using imagery of targets validated, and then the STA model is validated using the
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synthetic imagery. The VISEO system generates 5. Gould, J. D., "Looking at pictures", In: R. A. Monty
backgrounds using one or more spectral bands of measured and J. W. Senders (Eds.), Eve movements and
background imagery, depending on the type of sensor being psychological processes, l lillsdale, N. J.: Lawrence
simulated. The spectral bands range from the visible to Erlbaum Associates, 1976.
LWIR. The database is calibrated. and the algorithm for
combining bands has been validated.' 6 The VISEO system 6. Rayner, K.. "Foveal and parafoveal cues in reading",

high-idelty goundIn: .1. Reqnin (Ed.). Attention atidpetforrnanee (Vol.
also has a library of approxim ately 75 high-fidelity groundI i d (E .NJ: Lnce Erlba m and As o t

and air targets, most of which have been validated in the 7), 8illsdate, N.J: Lawrence Erlbaum and Associates,

visible and/or IR bands. With the VISEO system, one can

generate imagery at any desired frame rate in order to 7. Bellamy, 1.. .1. and Courtney, A. J., "Development of a
capture high temporal-frequency effects. With VISEO, one search task for the measurement of peripheral visual
need not generate the imagery for the whole set of test acuity", Ergonomics. 24, pp. 497-509, 1981.
conditions at one time. Imagery can be generated for 8. Erikson. R. A.. "Relation between visual search time
selected conditions, submitted to the STA model to and visual acuity", Human Factors, 6, pp. 165-178,
generate predictions, and then archived. Another advantage 1964.
of the VISEO system is that radiation from the target model
is not limited by any camera or sensor system. One can 9. Johnston. D. M., "Search performance as a function of

therefore model specular reflections from the target, for peripheral acuity", Hutana Factors. 7, pp. 528-535,

example, and evaluate their effect on dctectability by 1965.

submitting the resulting scene data directly to the STA 10. Arani, T., Karwan, M. 11. and Drury, C. G., "A
model, variable-memory model of visual search", Hluman

It is clear that Approach A has serious shortcomings - due Factors, 26, pp. 631-639. 1984.

both the difficulty of controlling observer test in the field 11. H-umphereys. G.W. and Muller. 11.J., "Search via
and sensor dynamic range limitations. 1-towever, Recursive Rejection (SERR): A Connectionist Model
approaches B and C both have advantages for certain types of Visual Search", Cognitive Psychology, 25, pp. 43-
of applications. With VISEO, there is no need to deploy 110, 1993.
and control targets during field imagery collection, and one 12. Nicoll. A Search for Inderstanding: Analysis of
can more easily evaluate temporal effects and specular
reflections. However, one must build high-fidelity models Hinnan Petforilance on Ta7rget Acquisition and

of the targets, if they are not already in the VISEO Search Tasks Using Eye racker Data, IDA Paper P-

database. 3036. Institute for Defense Analyses, 1995.

13. Doll. T. J. and Schmieder, D. E.. "Observer false
alarm effects on detection in clutter", Optical
Engineering, 32, pp. 1675-1684. 1993.
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